Uniform integrability

From Wikipedia, the free encyclopedia
(Redirected from Uniform absolute continuity)

In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.

Measure-theoretic definition[edit]

Uniform integrability is an extension to the notion of a family of functions being dominated in which is central in dominated convergence. Several textbooks on real analysis and measure theory use the following definition:[1][2]

Definition A: Let be a positive measure space. A set is called uniformly integrable if , and to each there corresponds a such that

whenever and

Definition A is rather restrictive for infinite measure spaces. A more general definition[3] of uniform integrability that works well in general measures spaces was introduced by G. A. Hunt.

Definition H: Let be a positive measure space. A set is called uniformly integrable if and only if

where .


Since Hunt's definition is equivalent to Definition A when the underlying measure space is finite (see Theorem 2 below), Definition H is widely adopted in Mathematics.

The following result[4] provides another equivalent notion to Hunt's. This equivalency is sometimes given as definition for uniform integrability.

Theorem 1: If is a (positive) finite measure space, then a set is uniformly integrable if and only if

If in addition , then uniform integrability is equivalent to either of the following conditions

1. .

2.

When the underlying space is -finite, Hunt's definition is equivalent to the following:

Theorem 2: Let be a -finite measure space, and be such that almost surely. A set is uniformly integrable if and only if , and for any , there exits such that

whenever .

A consequence of Theorems 1 and 2 is that equivalence of Definitions A and H for finite measures follows. Indeed, the statement in Definition A is obtained by taking in Theorem 2.

Probability definition[edit]

In the theory of probability, Definition A or the statement of Theorem 1 are often presented as definitions of uniform integrability using the notation expectation of random variables.,[5][6][7] that is,

1. A class of random variables is called uniformly integrable if:

  • There exists a finite such that, for every in , and
  • For every there exists such that, for every measurable such that and every in , .

or alternatively

2. A class of random variables is called uniformly integrable (UI) if for every there exists such that , where is the indicator function .

Tightness and uniform integrability[edit]

One consequence of uniformly integrability of a class of random variables is that family of laws or distributions is tight. That is, for each , there exists such that

for all .[8]

This however, does not mean that the family of measures is tight. (In any case, tightness would require a topology on in order to be defined.)

Uniform absolute continuity[edit]

There is another notion of uniformity, slightly different than uniform integrability, which also has many applications in probability and measure theory, and which does not require random variables to have a finite integral[9]

Definition: Suppose is a probability space. A classed of random variables is uniformly absolutely continuous with respect to if for any , there is such that whenever .

It is equivalent to uniform integrability if the measure is finite and has no atoms.

The term "uniform absolute continuity" is not standard,[citation needed] but is used by some authors.[10][11]

Related corollaries[edit]

The following results apply to the probabilistic definition.[12]

  • Definition 1 could be rewritten by taking the limits as
  • A non-UI sequence. Let , and define
    Clearly , and indeed for all n. However,
    and comparing with definition 1, it is seen that the sequence is not uniformly integrable.
Non-UI sequence of RVs. The area under the strip is always equal to 1, but pointwise.
  • By using Definition 2 in the above example, it can be seen that the first clause is satisfied as norm of all s are 1 i.e., bounded. But the second clause does not hold as given any positive, there is an interval with measure less than and for all .
  • If is a UI random variable, by splitting
    and bounding each of the two, it can be seen that a uniformly integrable random variable is always bounded in .
  • If any sequence of random variables is dominated by an integrable, non-negative : that is, for all ω and n,
    then the class of random variables is uniformly integrable.
  • A class of random variables bounded in () is uniformly integrable.

Relevant theorems[edit]

In the following we use the probabilistic framework, but regardless of the finiteness of the measure, by adding the boundedness condition on the chosen subset of .

  • DunfordPettis theorem[13][14]
    A class[clarification needed] of random variables is uniformly integrable if and only if it is relatively compact for the weak topology .[clarification needed][citation needed]
  • de la Vallée-Poussin theorem[15][16]
    The family is uniformly integrable if and only if there exists a non-negative increasing convex function such that

Relation to convergence of random variables[edit]

A sequence converges to in the norm if and only if it converges in measure to and it is uniformly integrable. In probability terms, a sequence of random variables converging in probability also converge in the mean if and only if they are uniformly integrable.[17] This is a generalization of Lebesgue's dominated convergence theorem, see Vitali convergence theorem.

Citations[edit]

  1. ^ Rudin, Walter (1987). Real and Complex Analysis (3 ed.). Singapore: McGraw–Hill Book Co. p. 133. ISBN 0-07-054234-1.
  2. ^ Royden, H.L. & Fitzpatrick, P.M. (2010). Real Analysis (4 ed.). Boston: Prentice Hall. p. 93. ISBN 978-0-13-143747-0.
  3. ^ Hunt, G. A. (1966). Martingales et Processus de Markov. Paris: Dunod. p. 254.
  4. ^ Klenke, A. (2008). Probability Theory: A Comprehensive Course. Berlin: Springer Verlag. pp. 134–137. ISBN 978-1-84800-047-6.
  5. ^ Williams, David (1997). Probability with Martingales (Repr. ed.). Cambridge: Cambridge Univ. Press. pp. 126–132. ISBN 978-0-521-40605-5.
  6. ^ Gut, Allan (2005). Probability: A Graduate Course. Springer. pp. 214–218. ISBN 0-387-22833-0.
  7. ^ Bass, Richard F. (2011). Stochastic Processes. Cambridge: Cambridge University Press. pp. 356–357. ISBN 978-1-107-00800-7.
  8. ^ Gut 2005, p. 236.
  9. ^ Bass 2011, p. 356.
  10. ^ Benedetto, J. J. (1976). Real Variable and Integration. Stuttgart: B. G. Teubner. p. 89. ISBN 3-519-02209-5.
  11. ^ Burrill, C. W. (1972). Measure, Integration, and Probability. McGraw-Hill. p. 180. ISBN 0-07-009223-0.
  12. ^ Gut 2005, pp. 215–216.
  13. ^ Dunford, Nelson (1938). "Uniformity in linear spaces". Transactions of the American Mathematical Society. 44 (2): 305–356. doi:10.1090/S0002-9947-1938-1501971-X. ISSN 0002-9947.
  14. ^ Dunford, Nelson (1939). "A mean ergodic theorem". Duke Mathematical Journal. 5 (3): 635–646. doi:10.1215/S0012-7094-39-00552-1. ISSN 0012-7094.
  15. ^ Meyer, P.A. (1966). Probability and Potentials, Blaisdell Publishing Co, N. Y. (p.19, Theorem T22).
  16. ^ Poussin, C. De La Vallee (1915). "Sur L'Integrale de Lebesgue". Transactions of the American Mathematical Society. 16 (4): 435–501. doi:10.2307/1988879. hdl:10338.dmlcz/127627. JSTOR 1988879.
  17. ^ Bogachev, Vladimir I. (2007). "The spaces Lp and spaces of measures". Measure Theory Volume I. Berlin Heidelberg: Springer-Verlag. p. 268. doi:10.1007/978-3-540-34514-5_4. ISBN 978-3-540-34513-8.

References[edit]